Category: RC Vehicles

Owning And Operating A Nitro Powered Radio Controlled Car Or Truck

Nitro RC Cars

by :nitro1Owning and operating a nitro powered radio controlled car or truck adds an element of excitement and realism to this hobby above and beyond that provided by the electric RC counterparts. Unfortunately, it also poses some unique challenges. The one question that is posed to me the most often is ‘how do I start a gas powered RC car’?

Well, first of all, you need to assemble a few necessary items. These can be obtained either individually, or purchased as a package with or without your radio controlled car or truck. You will need the correct nitro fuel, a glow igniter, batteries for your radio transmitter and receiver, and a small screwdriver.

Have your glow igniter fully charged and ready to use. Make sure you have installed batteries in your controller (transmitter) and the car’s on board receiver. Verify that they are functioning properly by operating the steering, throttle and brake. After all, you want to be able to control your RC car once it is running! Fill the car’s fuel tank with the proper nitro fuel. Be careful  fuel is extremely flammable and toxic! Check with your engine’s manufacturer or your local hobby shop to make sure you are using the recommended nitro mix. 20% is the most popular. OK? Now we are ready to fire her up.

Clip the glow igniter to the glow plug located in the top of the engine cylinder head. Rotate the engine by whatever means your car or truck uses such as manual pull recoil, on board electric starter, drill operated shaft starter, or portable starter box. You may have to ‘choke’ the engine to initially supply fuel to the carburetor. You can easily do this by placing a finger over the exhaust outlet. Watch for fuel movement through the fuel hose so you know when fuel has reached the carburetor. You don’t want to flood the engine!

Once the engine has started and is running smoothly, you can remove the glow igniter. Drive easy for a few minutes until the engine warms up a little. After warm up you may find it necessary to adjust the carburetor high speed needle, low speed needle, or idle speed set screw to maximize performance.

This might all seem intimidating to you, but it really isn’t hard to learn with a little practice and patience. The sound of that high performance nitro engine springing to life makes it well worth the effort!
sources www.hobbiedown.com and actionvillage.com

Step 1: how to drive you Gas RC car.                                                   nitro2nitro3                      I no most people think its easy to drive but most do not.
Step1
Realize that your controller works just like the steering wheel on your regular car. When you move it to the left, your RC car moves to the left and when you push the controller to the right, your car moves to the right.
Step2
Drive as fast as you can the first few times you take your RC car onto a new track. This will help you get a feel for the track without worrying too much about making a mistake.
Step3
Stick to the middle of the track instead of trying to hug the edges. Your lap times might not be as good, but at least you won’t drive your RC car right into one of the track barriers.
Step4
Look for lines or the areas of the track where more experienced racers drive their cars. This should give you an idea on how to lower your lap times.
Step5
Draft with other cars just as you would if you were racing NASCAR instead of driving an RC car. Not only can you increase your speed, but you can also see where other cars are running and what spots drivers are avoiding.
Step6
Be consistent any time you drive your RC car. The more time you spend racing and practicing, the better you’ll get.
ive but most dont.

Step 2: gas rc car safey                                                                              nitro4nitro5nitro6Safety Issues and Rules for Responsible RC Car & Truck Operation
Be a safe, courteous, and responsible RC car or truck owner and operator. Protect yourself, those around you, and your RC vehicles by using common sense and following certain guidelines for safe use of radio controlled cars, trucks, motorcycles, tanks, bulldozers, and other RC ground vehicles.
Control Your Controller
Before you run your RC: Controller on first, vehicle on second. After you run your RC: Vehicle off first, controller off second.
Choose a Safe Area to Operate Your RC
Choose a safe, open area to operate your radio controlled vehicle. Avoid people and busy streets.
Check Your Frequency
Check your frequency and make sure no one in your operating area is using the same frequency at the same time you are.
Check for Obstacles Before Operating Your RC
Survey the area that you will be driving in and make sure it is clear of undesired obstacles… i.e. stumps, large rocks, puddles of water, or other obstructions.
Avoid Spinning Wheels
Do not pick up your vehicle while the tires are still moving.
Handle and Store Nitro Fuel Safely
Nitro fuel is highly flammable. Avoid open flames — including smoking — around nitro containers. Mark your container for identification.

Step 3: Nitro RC Operation And Maintenance                               nitro7Nitro RC Operation and Maintenance
A nitro RC has many more parts than most electrics. There are also specific operational and maintenance requirements from engine tuning, to break-in, to after-run maintenance. Learn how to keep your nitro RC glow engine at peak performance levels. And when your nitro engine won’t run, do some troubleshooting to isolate and fix the problem.
Nitro Troubleshooting @
Nitro Engine Break-in Procedure
Proper nitro engine break-in is critical for long-lasting performance of your RC. Every new nitro engine should undergo a break-in procedure. If you do nitro engine break-in properly, the up-keep on your RC vehicle is less costly than if the procedure is done hastly and incorrectly. Be patient.
Adding After-Burn Oil
After running your RC for a while you have to perform after-run maintenance. Part of that after-run maintenance includes lubricating the pistons and all the internal parts by adding after-burn oil to the engine cylinder head.

Step 4: Carb ajusting.nitro9nitro8                  How does the carburetor work and how do I adjust it?

We got the theory part of the engine under control. We can’t really tune a piston or adjust a crank-shaft, at least not in your every-day engine maintenance and adjustment. So without further delays lets dive into the 2nd phase of this project& The Carburetor. What good is a 1.2 HP engine if you can’t keep the dam thing running? That’s exactly my point, it does not matter how little horse power your engine has, if it can stay running for the entire duration of the main then you will have a real good change to at least get one of the top three positions. They say that before you can win a race -first you must finish. The first part of finishing a race it to have a well tuned engine. In this article we will go over how a carburetor works and how to adjust it. Without any further delays lets get busy!

Carburetor Theory

The carburetor has one main function, to regulate engine speed. It accomplishes this by metering the amount of air and fuel as required, to sustain combustion per the input of the throttle servo. Thus for a low-speed idle you would have a small amount of air and fuel entering the engine. This would in effect lower the chemical energy entering the combustion chamber and thus lessen engine power and subsequently lower the RPM. As we open the throttle the carb will allow more air and fuel into the combustion chamber, thus increasing engine power and RPM’s (revolutions per minute). Now that we know what the carb. has to do lets explore the underlining fluid mechanic properties that allow the carb to function effectively at different throttle settings.

The Venturi-Effect

What allows the carb to pull fuel from the fuel tank is the venturi-effect. This states that in a converging funnel the entering fluid velocity increases as it passes through a reduction in the funnels throat diameter. This increase in fluid velocity decreases the localized pressure at the venturi throat to below atmospheric pressure. This low pressure region is precisely where fuel enters the carburetor throat. This is what allows the engine to “suck” fuel from the gas tank. The truth is that the venturi-effect is all that is needed for the engine to get fuel. Pressurizing the fuel tank is really only done to decrease the effects of fuel level on the mixture setting of the carburetor.

Fuel Metering Devices

The venturi-effect draws fuel from the tank but does little to regulate it’s flow. It’s true that as the engine accelerates the amount of air that moves through the engine increases. The increase in air velocity also increases fuel flow into the induction port, this helps the engine self regulate the fuel up to a certain point.

This is not the only means for the carburetor to meter air and fuel. Engines need a metering device to help regulate the amount of fuel that enters the carburetor. This is accomplished with an adjustable orifice, typically we call them needles or jets. Most engines have a second adjustable needle that helps regulate fuel at low throttle settings. By adjusting these two needles we can control the transition from low to high speed operation of the engine.

How do we adjust a carburetor?

The carburetor is typically adjusted with a long flat-head screw-driver. Carb adjustments are then done by rotating the needled in, our out of the needle seat. The idle speed is adjusted by a screw at the base of the carburetor. This allows the throttle barrel to only close to a preset position.

The carb has three main adjustments that allow you to set the following:

1. Set the idle speed.

2. Set the mixture at idle (Adjustable on 2-needle carbs only).

3. Set the high speed needle mixture and control engine temp

How to make carburetion adjustments:

Idle Speed:

The throttle stop screw or idle-speed screw (same thing) determines how far the carb barrel will be able to close when the servo is in the neutral position. Typically you set the servo/throttle linkage so that the carb will go from fully open when the trigger is fully pressed to fully closed when the trigger is in neutral. Then you would adjust the idle-stop/speed screw so that there is a 1-2 mm gap when the servo is in the neutral position. You might need to readjust the spring collars on the throttle linkage to force the throttle arm against the idle speed screw.

Tip#1: If you completely mess up the carb setting and you want to go back to the factory recommended needle setting then you must have the carb fully (Yes I mean fully closed) before you can set the low-speed needle to whatever turns the engine manufacturer suggests. Before you close the carb fully back the low-speed needle a bit to make sure you wont put un-needed stress on the needle seat.

Tip#2: There should be no speed change whatsoever when the car is in idle and when you hit the brakes. If the engine’s RPM drop either your linkage isn’t set right or the idle-speed screw is set too loose. Tighten clockwise until the carb barrel doesn’t move when you go from neutral to full brakes.

Tip#3: Some RTR kits have servo horns that are too small. There is not enough servo throw to open the carb barrel, if you use servo trim to be able to open the carb fully, then when you go to neutral the carb doesn’t close enough. To compensate for this the novice engine tuner opens up the low speed needle to drop the engine RPM so the car will stay still when at idle… The drawbacks of correcting the linkage problem with the mixture control is that now the low-speed is too rich and the car won’t idle for more than a couple of seconds before the engine sputters and dies.

To fix this problem you need to get an after market servo horn that is larger yet still fits your particular servo brand. Now you can go from fully open to fully closed, without using trim. Now you wont have to compromise the carb settings because of lack of servo throw.

Low-Speed Needle:

At this point you would start the engine warm it up and commence tuning. Adjust the low-speed needle clock-wise until the engine doesn’t sputter when at idle. You want a fast idle, if the car wants to move forward a lot, then turn the idle-speed screw counter clock wise to lower RPM until the engine just barely want to engage the clutch. It may take a little time to get the settings right.

Remember you want the fastest idle you can get away with. It will make the engine more stall proof. Some engine will overheat if the idle isn’t rich enough, you need to experiment to determine what’s the right setting for your particular engine. When every thing is set right the engine will be able to idle through an entire tank without missing a beat.

High-Speed Needle:

The high speed needle will control fuel flow into the carb from 1/2 to full throttle. Typically the high speed needle is set to allow the engine to reach it’s peak power point, then you open the needle slightly and go racing. On very hot and humid days you will probably have to make a compromise in the tuning department. For most this will mean you will richen up the high-speed needle to lower engine temperatures to acceptable levels. Everyone has their own interpretation of what an acceptable engine temperature is, for me anything under 260 is acceptable. Going higher will typically mean shorter engine life-span and less reliability.

Step 5: Glow Engine tuning basics                                                      nitro10nitro11                        Understanding Your Engine
The first and foremost consideration when attempting to tune your glow engine is understanding the basic parts and their functions. By understanding the fundamentals, you can better tune your engine for maximum performance while at the same time, expanding the life of your engine.

Carburetor
The carburetor is the mechanism that mixes fuel and air in very specific proportions and passes it on to the engine through the vacuum intake. The natural operation of the engines causes of flow of gases to pass through the engine (through the carburetor) and out the exhaust manifold and on to the pipe or muffler. The exact mechanism for this is unimportant for the scope of this tutorial, however it is important to realize that air and fuel pass into the engine by this vacuum method. Depending on how you adjust your carburetor, you can either adjust how much of this gas/air mixture reaches the engine and to what proportion of gas to air passes on to the engine. By reducing the amount of fuel per volume of air, you are making the mixture “lean” and by increasing the amount of fuel, you are making the mixture “rich”.

The two types of carburetors are slide and barrel. The old-style barrel carburetors still dominate the market because of their simplicity in design and because of the tendency for designers to hang on to legacy design. These have been around since the beginning of glow-fuel planes. They control gas/air flow by rotating a barrel with a hole cut in either side that allows varying amounts of gas/air mixture to flow through the carburetor as the hole opening enlarges to the venturi (air shaft down the center of the carb body).

Idle-Speed Adjustment
This is the most basic and easy to understand part of tuning your carburetor. This spring-tensioned screw limits the closure of the barrel aperture. Although this doesn’t affect the mixture of the fuel it does affect the idle speed. The more closed the aperture is, the slower the idle, the larger the aperture, the faster. As you close this aperture up and the idle speed decreases, you will eventually (sooner than later) stall the engine out. In order for the engine to run, it must have enough inertial energy built up in the engine and flywheel to carry it through the entire ignition cycle. Generally speaking, you want to adjust this down to the slowest idle, just before it begins to stall.

Low-End Mixture Adjustment
This adjusts the fuel mixture at or near idle. Some engines lack this low-end mixture valve for reasons of simplicity, however this makes accurate tuning difficult.

For barrel carbs, this mixture valve is generally found where the throttle-arm pivots. Some are countersunk, others are clearly visible from the outside. On slide carbs, they are generally found on the opposite side of the carb from the throttle slide shaft (has an accordion billow type rubber boot over it) next to, but below the fuel-inlet and high-end mixture valve.

High-End Mixture Adjustment
Also known as the Main Needle adjustment, this is the primary fuel mixture adjustment. This is generally found on the top end of the engine, typically next to where the fuel line goes into the engine. Some are flat-head screws like the low-end mixture, others are hand adjustable valves.

Tuning Basics

It’s important to understand that there is a reputation for glow-engines to be difficult to tune. This is a common error in thinking. With a little bit of know-how, tuning a glow engine can really be a simple, pain-free process. People that don’t properly understand the basics can easily become frustrated by what should be a simple, straightforward process. Here’s how you do it:

Dialing it In
For the purpose of this tutorial we are going to make some basic assumptions. First, we’re going to assume that the rest of your car or truck is properly functioning and that you have everything ready to go. Second, we’re going to assume that you are able to start your engine and that it at least runs for a second or so.

The first place to start with dialing in your engine is to make sure that you have your idle-speed properly adjusted. Your engine manual should give you specific instructions on setting the aperture gap to the minimum size. It’s important that we get this resolved before continuing on. If your engine can’t get enough air/gas flow then it won’t start/run. A clockwise rotation opens the aperture and increases the idle RPMs, a counterclockwise slows it down.

Second, you should tune the low-end mixture valve. This is done before the high-end (main needle) adjustment because an improperly adjusted low-end can affect the high-end performance. Like most mixture valves, clockwise rotation will “lean” the mixture and a counterclockwise will “richen” the mixture.

To determine whether the low-end mixture requires tuning, allow the engine to warm up completely, and then allow it to idle, uninterrupted for one full minute. If the engine continues to run after the minute is up then your low-end mixture is correct and you’re ready for the high-end adjustment. If it dies on you then there are two possibilities; either you are running too rich or too lean. To determine which is the case you must listen for how the engine dies in its idle test.

If the engine’s RPM’s rev up at the last second and then the engine dies than you are running too lean. To correct this, turn the low-end mixture screw counterclockwise (out) 1/8 of a turn (always make adjustments in 1/8 turn) and retry the idle test.

If, on the other hand, it begins to wind down and you notice a change in how the exhaust sounds in the last few seconds, then your engine is running too rich. To correct this, turn the low-end mixture screw clockwise (in) 1/8 of a turn and then retry the idle test.

Once you have passed the idle test and are able to idle for one full minute (after first warming the engine up, of course) you are ready to continue on. You may have to repeat the above process a few times until it is properly set. Remember, only adjust the screw 1/8 of a turn. It’s far too easy to go too far with the adjustment. Setting changes don’t always take effect immediately. You may have to run your engine for a few minutes for the full effect to take place.

Now that you have dialed in your low end, any carb mixture problems can be isolated to the high-end (main) mixture adjustment.

Acceleration is the tell-tale sign of how to tune your high end. If you hit the throttle and it takes off suddenly but then suddenly dies or loses power then you have your main mixture set too lean. Try backing (counterclockwise) the main mixture needle out 1/8 of a turn and retry. If it bogs immediately when you hit the throttle (sounds like it’s choking), then it’s most likely running too rich. Try leaning the mixture out by screwing the main mixture valve in (clockwise) 1/8 of a turn.

The more accurate way of really dialing in the top-end is to take the engine’s temperature. A properly tuned engine should run between 210� and 220� Fahrenheit. This can only really be ascertained by using and infra-red thermometer such as the type used by automotive mechanics. On-board or direct-transfer types that measure the heat from the head are inaccurate because, assuming the head is properly dissipating heat, it would reflect a lower than accurate temperature as a majority of the heat energy would be dissipated from the exposed surface of the head. By “looking” at the temperature near the core (actually, area immediately surrounding the glow plug) the temperature can be more accurately read.

The cheap but easy alternative would be to drop a bead of water down the head on the glow-plug and see whether it boils off. If it slowly simmers than it probably is running right around 212�. If it boils to quickly then it’s probably too lean and needs to be richened. If it just sits there and doesn’t boil at all, then its running too rich and needs to be leaned out.

An engine that is running too lean will run hotter and exceed the 220� degree limit. This can significantly reduce the life of your engine. Although it may be tempting to run your engine as lean as possible (does give a short-lived performance boost), this should only be done if you are very wealthy and like swapping engines out every race. There is no quicker way to kill and engine, honest. This is simply because as you lean the engine out, it gets less fuel to the engine, and more importantly, less lubricant. Since glow fuel is the only means of lubrication for your engine, the lack of it means certain death to your powerplant.

A few final do’s and don’ts…

    • Give your adjustments time to take affect. Remember that most adjustments won’t be immediately noticeable. You need to drive your engine through it’s full range for at least a minute. Make sure you make adjustments in 1/8 turn adjustments only!
    • Always run on the rich side. It’s far better to take a slight performance hit than to turn your engine into a paper weight. Running too lean may give you a temporary thrill, but it’s short lived. Your engine must get the proper amount of lubrication at all times.
    • Changes in temperature affect your tuning! Whenever the outside temperature changes you will most likely need to re-adjust your engine. Warmer temperatures require a leaner setting where colder temperatures require a richer setting.

 

I hope that this info gets you on the right track. If all fails, it’s always a good idea to get expert advice from the vets down at your local track. However, be aware of the guy that’s too eager to give you advice on how to get that extra performance boost out of your engine. Unless he or she plans on buying your next engine, I would be weary of any such advice.

Good luck!

Step 6: Engine Maintenance.                                                                nitro10nitro11                         day-to-Day Maintenance

There are three basic steps one should take on a day-to-day basis to ensure you continue getting the most from your engine:

1. Keep your engine clean on both the inside and outside. By keeping pariticles of dirt out of the workings of your engine, the operating surfaces will remain smooth and therefore less wear and better performance will result. Always use a fuel filter between your tank and the engine to catch any particles in the fuel. When operating in dusty conditions, use an air filter on your carb to keep particles out of your air intake. When done for the day, use a motor spray to clean off the dirt from the outside of the engine, especially the carb and linkages.

2. Use an after run at the end of the day. Since fuel contains elements that are hydroscopic (they abosrb water), any fuel left in an engine will attract moisture and therefore contribute to rust. It is important that you run the engine dry after your last flight or run to remove the last of the raw fuel. This can be done by simply pulling the fuel line from the engine and letting the engine run out. Apply several drops of after run oil into your carb and turn the engine over to ensure the oil gets distributed throughout the inner workings, coating the metal and protecting it from rust.

3. Ensure all of your nuts and bolts are tight. Between flying or running sessions, check that all of your bolts, such as the head bolts, backplate bolts, muffler bolts, engine mounting bolts, and carb mounting screws, are tight. Also, check that prop nut to ensure you won’t be launching a spinning prop on your next flight. An over revved engine, particularly a four stroke, can cause damage without the load of a prop or flywheel.

End of Season Maintenance

When the flying season is over, a small amount of engine care can ensure a successful beginning to the following season.

Clean Engine with Motor SprayRemove your engine from the model and give it a visual checkessentially perform the same checks you would do at the end of a day. Make sure that all bolts are in place and tight. It is not necessary to disassemble the engine unless you feel that there is internal damage or that the bearings require replacing. Replace any stripped bolts or rough running bearings. Clean the entire engine with motor spray to remove all dirt. Finally, load up the engine with after run oil, turning it over to ensure that all moving internal parts are covered. This will go a long way to reducing the chance of your engine rusting in the off season. Store the engine in a baggie to keep the dirt out and the oil in!
Beginning of the Season

The first thing to do before re-installing your engine is to replace the plumbing in your model. Remove the fuel tank and take out the rubber stopper and all brass and silicone tubing. There are components in the fuel that break down brass over time and if left, the tubing will eventually crumble or at the least allow air to enter the line. Clean the residue from the tank itself with a bit of isopropyl alcohol and then install a new rubber stopper assembly with new brass and silicone tubing. Reinstall your tank.

Take your engine from its baggie and use spray motor cleaner to get the after run off the outside of the casing. Re-install your engine to the model. When you are ready to run your engine, remove the glow plug and flush fresh fuel through the engine, turning it over with your thumb over the carb. This will clear out the storage oil. Replace the plug and start your engine as normal. http://  http://Amazon.com – Read eBooks using the FREE Kindle Reading App on Most Devices

Off-Road RC Car Tuning Guide

Need More Steering?
• Batteries – Move batteries towards the front of the vehicle.
• Front Shock Mounting – Move the lower shock mount towards the outside
• Front Camber Link – Longer camber links increase steering
• Front Ride Height – Lower the front ride height
• Rear Ride Height – Raise rear ride height for more high speed steering
• Rear Shock Mounting – Move upper mount towards outside
• Wheelbase – Lengthen the wheelbase for more steering
• Rear Toe-in – Decrease rear toe-in
• Ackerman – Use less Ackerman for more sensitive steering                                                                               offroad1                                                                                                             Need More Traction?
• Batteries – Move batteries towards the rear of the vehicle
• Rear Ride Height – Lower rear ride height
• Rear Camber – Less camber (0 -1 deg.)
• Camber Link – Longer camber links
• Rear Shock Mounting – Move upper mount towards the inside
• Wheelbase – Shorten the wheelbase
• Rear Toe-in – Increase rear toe-in
• Slipper – Loosen slipper so wheels don’t spin as much                                                                                             offroad2                                                                                                                 Need Better Jumping?
• Shock Oil – If bouncing too much or bottoms out over jumps, use heavier oil
• Shock Pistons – If bottoming out over jumps, use smaller hole pistons
• Rear Shock Mounting – If bottoming out over jumps move upper mount towards he outside
• Battery Position – If nose high during jumps, move battery forward, move rearward if nose is down during jumps
• Weight – Add weight to nose if it’s too high during jumps                                                                                     offroad3                                                                                                                              Need More High Speed Steering?
• Front Toe – More toe-in gives you more steering coming out of the corners
• Front Caster – Less caster gives you more steering exiting corners
• Rear Ride Height – Raise rear ride height for more high speed steering                                                            offroad4                                                                                                                    More Stable Over Rough Tracks?
• Anti-squat – Less anti-squat allows better acceleration on rough tracks
• Rear Camber – More negative camber is more stable on bumpy tracks
• Rear Camber Link – Shorter camber links is more stable on bumpy tracks
• Front Shock Mounting – Move lower shock mount inside for bumpy tracks
• Battery Mounting – Place in the middle for most stable on all tracks                                                                 offroad5                                                                                                                   Credits: rcracingusa.net  http://     

Water Drop Effect — Proline How to Paint series

paint1paint2paint3paint4paint5

 

Squirrel’s YouTube Video Playlists: http://www.youtube.com/profile?user=S…  http://  Join Amazon Kindle Unlimited 30-Day Free Trial

Modifying Your RC Motor

Nine Easy Go-FastMods- It’s no question – the sensation of speed is one of the most popular aspects of radio control. Racers and bashers may differ in many ways when it comes to how they enjoy their favorite hobby, but they both share their desire for faster acceleration and higher velocity. From cleaning and oiling bearings to installing more horsepower, there are many ways to make your car faster – some without spending any money!

mod1 http:/  I dug deep into the RCCA archives for this gem – nine easy go fast mods. Enjoy the read, then start wrenching – after all, you’ve got races to win…even if they’re just down the street.

MAXIMUM VELOCITY MINIMUM EFFORT
Words: Kevin Hetmanski

Who doesn’t like to go fast? Nobody. Who wants to go faster? Everybody! Without spending a lot of time or dough, following these 8 tips will help you add a few more miles per hour and a little more distance between you and the second-fastest guy on the block. Think of them as “speed reading.”

POP THE CARB RESTRICTER

If you remove the carb restricter, you can uncork an extra mph or 2 as well as some snappier acceleration.

SPEED INCREASE ª 2MPH

Most nitro cars come with unrestricted carbs, but if your carb has a restricter (such as on this Associated GT2 RTR), you can gain a few mph by popping it out. When we tested the GT2 RTR, removing the restricter added 2.7mph and made the throttle punchier, which is great on pavement and other high-grip surfaces but can cause spin outs in low-grip dirt. So, if you pop the restricter, keep it in your toolbox; you may want to put it back in!

USE A 7-CELL OR LIPO PACK

Upgrading to LiPo power will save more than 3 ounces of weight and increase voltage for a significant speed boost.

SPEED INCREASE ª5 TO 10MPH

Boosting voltage is an easy, no-mod way to increase the speed of any electric car, provided your speed control can handle the extra juice. If you switch from a 6-cell pack to a 7-cell, you’ll increase voltage from 7.2 to 8.4 volts and have a significant increase in off-the-line punch and top speed. You can get a similar benefit (along with reduced weight and increased run time) by switching to LiPo power. A 2-cell LiPo pack delivers 7.4 volts; that doesn’t seem like a big voltage gain, but it does make a very noticeable difference in performance because the pack is also 3.5 ounces (give or take) lighter than a sub-C pack.

RUN FUEL WITH A HIGHER NITRO PERCENTAGE

More nitro means more speed-producing power.

SPEED INCREASE ª2 TO 5MPH

More nitro means a bigger boom with each combustion cycle, and that means more speed (or at least you’ll have the power you need to spin a taller gear ratio, and that will mean more speed). For maximum engine life, we suggest that you run 20-percent nitro for regular running, but when it’s time to crush the other guys in the neighborhood, reach for a jug of 30 percent. But be warned, the engine will run hotter.

INSTALL A HOTTER MOTOR

Drop in a hotter motor, like a 10.5 from Tekin’s Gen2 series, and you can easily add 10mph or more, depending on the motor you’re replacing.

SPEED INCREASE ªUP TO 15MPH

Swapping a Neon’s 4-banger for a big-cube V-8 would be a herculean task in the full-size hot-rodding world, but similar performance gains are as simple as removing two screws on an electric RC car. Most RTRs include an anemic 540 motor that’s good for about 18mph; install a modified motor, and you can easily double that speed; the lower the number of winds, the faster the motor. One caveat: the faster the motor, the greater the strain it will put on your car’s speed control, hence the “motor limit” rating for most speed controls. Check your speed control’s manual, and stick with a motor that has the same number or more winds than the limit.

INSTALL BALL BEARINGS

For the ultimate in friction-fighting, ceramic bearings like these from Acer are the way to go.

SPEED INCREASE ªUP TO 2MPH

Fresh bushings can actually outperform grease-packed ball bearings, but bushings quickly degrade and that costs speed. For maximum velocity, metal-shielded (not rubber-sealed) bearings are best. Most cars already have ball-bearing transmissions, so all you have to do is pop bearings into the hubs. The speed increase won’t be dramatic and will depend on the state of your car’s drivetrain before the install, but you’ll get more than speed: bearings greatly outlast bushings and take the slop out of rotating parts.

SWAP MONSTER TREADS FOR STREET TIRES

Pro-Line’s Road Rage tires (left) will let your truck reach its maximum speed potential on pavement; bar-treads such as those on the Mashers (right) require more power to spin.

SPEED INCREASE ª2 TO 5MPH

Gnarly monster treads are fine for the dirt and grass, but their excessive weight and rolling resistance robs you of speed on pavement. If you trade those treads in for street rubber, your truck will need less power to overcome that weight and rolling resistance, leaving more power for pure speed once you’re geared to take advantage of that power and to compensate for what will likely be smaller-diameter tires.

TUNE THE ENGINE

Don’t be afraid to lean it out! You can always richen it back up if you go too far.

SPEED INCREASE ªUP TO 10MPH

The only thing more amazing than the amount of power a little nitro RC engine can make is how much less power it makes if the needle settings are just a little off. We’ve seen guys give up half their engine performance to bad tuning, typically by running the engine too rich. Lean the high end out by turning it clockwise 1/12 turn (think of it as 5 minutes on the face of a clock), and make a few passes to see if your engine reaches higher rpm (and thus, higher speed). When the engine stutters at full throttle or starts running closer to 300 degrees, it’s too lean; aback it off until the engine sings a clear high note at full throttle with a faint smoke trail from the pipe.

CUT THE FAT

Kevin Hetmanski’s race-prepped Revo is full of weight-saving tricks: graphite chassis, deleted receiver and battery boxes, single high-torque steering servo to replace dual servos.

SPEED INCREASE ª1 TO 3MPH

If you can trim weight from your ride, it won’t need as much power to get up to speed, and that means it can go even faster. Exactly how much weight you can lop off depends on the type of vehicle you have. A burly monster truck with 8 shocks, heavy tires, a reverse-gear servo and other not-essential-for-speed parts can be lightened significantly by removing the superfluous parts, but a racing-style buggy, stadium truck, or touring car might only have a few grams to offer (don’t bother).

FAST FACT

When looking for weight savings, go to the wheels and tires first. The old racers’ adage “a pound of rotating weight is like 2 pounds of non-rotating weight” is very true, especially if you have a monster truck with heavy chevron tires!

GEARING THE REAL SECRET OF SPEED

A set of pinion gears such as these from Robinson Racing will let you match your car’s gearing to its power potential.

All of the tips outlined in this article can increase speed, but to really take advantage of them, proper gearing is essential. Otherwise, you’ll probably see quicker acceleration but little or no increase in top speed, which isn’t necessarily a bad thing, as acceleration wins more races than sheer speed. But when absolute speed is the goal, it’s all about gearing. To understand why, think of your car as a bicycle, and its engine as your legs.

THINK PEDAL POWER

Put your bike in first (the easiest) gear, and you can easily pedal to your maximum rpm. You probably aren’t going very fast, but you can really spin the pedals. A lighter bike, more aerodynamic position, or reduced rolling resistance won’t help you go any faster, since your legs are already going as fast as they can. So you up shift the bike to a taller gear ratio, and you go faster, and you keep up shifting and going faster until the gear ratio is too tall for the strength of your legs to overcome. The same thing is going on in your RC car. Unless your modification increases the motor’s or engine’s rpm, your car won’t go faster. But if you make it more powerful (or free up more power by diverting less to fighting inertia and rolling resistance), your powerplant will be able to turn a taller gear ratio for more speed just like an Olympic cyclist is able to go faster because he has stronger legs to turn a bigger gear on his bicycle.

PUTTING IT TO WORK IN RC

There are two ways to gear up an RC car for more speed: install a pinion or clutch bell with more teeth or a spur gear with fewer teeth. This will make your car roll farther with each turn of the engine’s crank or the motor’s output shaft and thus increase speed. Try going up two teeth maximum on the clutch bell, or up to four teeth on the pinion gear. Don’t overdo it; if you gear the car too high, you’ll strain the powerplant, and you may actually go slower. Check your manual for suggested gear ratio ranges.                 Credits:    http:// http:// Remote Control Toys on Sale

RC Cars Suspension Tuning

– Basic Suspension Tuning –

With Mark Pavidis suspension1http:// Mark Pavidis is old school. He’s been making A-mains at big races since some of today’s younger pro racers were in diapers. He has raced for some of the biggest companies in our industry, and has helped developed some of the most influential chassis, tire, and component designs in the RC world. Mark has been competitive at the top levels of RC racing longer than anyone from any part of the world, and many racers from any generation regard him as one of the toughest competitors they’ve ever faced.

He has won U.S. National championships in several classes, including 1/8-Scale Buggy. Along with Japanese legend Masami Hirosaka, Mark is the only other driver to win IFMAR World titles in both on-road and off-road competition. Unlike Masami, or any other driver, Mark is the only driver ever to win IFMAR World championships in both electric and nitro competitions. His 2006 IFMAR 1/8-Scale Off-Road title reaffirmed his place in RC history as one of the best racers of all time.

I sat down with Mark at AKA’s new offices in Murrieta, California, to discuss the most common adjustments available on today’s nitro buggies. When Mark Pavidis talks buggy setup, we listen.  suspension2  CAMBER
Camber is the relationship of the tire to the ground, such that a tire that is perpendicular to the racing surface has zero camber. If the top of the tire leans in toward the car, it has negative camber; likewise, a tire that leans outward at the top has positive camber.

Front Camber. Adding more negative camber to the front of your buggy will make your car less aggressive, especially when turning into the corner. More negative camber will also lessen the chances that the front tires will catch on ruts or bumps. Mark says, “On rough or high speed tracks, adding more negative camber is an important adjustment to make.” It’s usually best to start with a little bit of negative camber in the front.

Taking away negative camber (or even adding positive camber) to the front of your buggy takes away a little bit of overall steering, but will make your buggy steer into the corner more aggressively since the corner of the tire will dig into the track’s surface. This can help on slower tracks with plenty of high-speed corners.

Rear Camber. More negative camber in the rear tires will free up the rear of the car, making it whip around by taking away lateral traction. As with the front of the car, more negative camber will help your buggy navigate through rough sections of the track.

Running less negative camber in the rear will take away a little bit of overall steering, but your buggy will handle more responsively. If the track is not bumpy and has good traction, try running less negative camber to help carry more speed through corners.     suspension3 CAMBER LINK POSITIONS
The optional camber link mounting holes alter the rate at which the camber angle changes throughout the suspension’s movement. For the purposes of making only the following changes, you should reset your camber angles after moving the camber link locations.

Front
Outside (on the front hub).
A longer link means the camber will change less as the suspension compresses, which will make the car turn in harder but push exiting the corner.
Moving to the inside hole will give more camber rise, which smooths out initial turn-in but adds steering through the middle and exit of the corner.

Inside (on the shock tower).
Raising the inner mount will keep the front end more flat. On high bite and smooth track, this will smooth out your car’s steering response and make it easier to drive.
Lowering the inner mount will add body roll and make the car more aggressive. Mark almost always runs the lowest hole available.

Rear
Outside (on the rear hub).
A longer link gives less camber rise, which means less traction. On a high speed track with high grip, this will add more support by eliminating body roll.
A shorter link equals more camber rise and more traction. Because a shorter link will make the rear of the car feel softer, it will better handle rough sections of the track.

Inside (on the shock tower).
Moving the inner camber link mount to the inside or outside hole will have the same effect as changing the length of the link on the hub.
Raising the link on the rear shock tower will keep the buggy flat through corners and have less camber rise; this is a good adjustment to make on a smooth track with high traction.
Lowering the link will add camber rise and make the car more forgiving when the track is rough.
Moving the link out on both the shock tower and the hub, which will keep the camber link the same length, will add support and make the rear of the car feel stiffer. suspension4

TOE-IN / TOE-OUT
This is the angle of the tires when compared to the centerline of the car. A tire that has zero toe is pointing straight ahead. Toe-in means that the tires point in toward each other, while toe-out is the opposite.

Front Toe
1/8-Scale Buggies almost always run toe-out in the front. Adding more toe-out will make the car smoother and easier to drive on big tracks, as well as increase low-speed steering by decreasing the car’s turning radius.
Likewise, decreasing toe-out (even to the point of running zero toe) will give the car more initial steering response. This is usually only done on tight, low-speed tracks.
Mark says, “If you run toe-in (at the front), your car won’t come out of the corner very well, and initial turn-in will be too darty. If you run toe-out, it will turn in and come out of the corner much smoother.”

Rear Toe
The rear of the car is much different, as toe-out is never used. Adding more rear toe-in will add overall rear traction, both in a straight line and during cornering.
On the flip side, less toe-in will increase steering since the rear tires will have less traction. Also, the rear suspension and driveshafts will be at less of an angle, which will help on rough sections of the track.
Mark says, “Nine times out of ten, I run maximum rear toe-in (on the Kyosho MP9, this is three degrees of toe-in per side). The only time I run less is in truggy, because there’s already so much grip.” Also, he suggests only changing the inner pivot blocks to adjust toe-in rather than using rear hubs with different angles of toe-in. Changing the rear hubs will increase the angle of the driveshaft joint and change how the car works. suspension5KICK-UP
Kick-up is the angle between the ground and the lower inner hinge pins on which the suspension arms swing. Altering kick-up will affect the car much like caster does. In addition, adding kick-up will make your bump higher and further. You should only consider decreasing kick-up when the track has few or no jumps. suspension6

SHOCK POSITION
Tower. Moving the shock in on the tower will make the shock feel more progressive i.e.; initially it will feel softer, but increasing in stiffness as the shock compresses. If the track is slippery, move the shock in on the tower to add body roll and overall traction.
Moving the shock outward will make the shock feel more linear. This will free up the car and make it jump much better. On a track with lots of grip, move your shocks out on the tower to reduce body roll.

Arm. Moving to a more inward shock location on the arm will make the buggy feel softer and less stable. For blown out tracks, this adjustment will help navigate bumps and ruts without hurting the car’s jumping performance as much as moving the shock inward on the tower.
An outer shock position on the arm will make the car rotate more during cornering, and make the buggy feel more stable. This comes at the expense of rough track performance.

SHOCKS
Shock Oil. Thicker shock oil will help the car to navigate larger jumps and bumps since the oil will slow the reaction of the shock. In hot weather, increase the weight of your shock oil to maintain the same damping characteristics.
Thinner shock oil will allow the shock to react more quickly, and help your buggy soak up smaller bumps and track imperfections. If your buggy works well in warm weather, switch to thinner shock oil in very cold conditions.
Mark explains, “Temperature is a huge part of choosing shock oil.”

Shock Pistons. Choosing the correct shock pistons is quite simple. On smooth tracks with big jumps, Mark suggests using smaller pistons to slow down the shock action. On rough tracks with fewer jumps, reach for pistons with larger holes to allow the shock to soak up the ruts.

Shock Springs. Mark doesn’t often change his shock springs to adjust his car. In fact, he suggests changing both the front and rear springs at the same time to maintain the same balance front to rear. If the track surface is slippery, go to lighter springs to create more body roll and slow the car’s reactions. On asphalt, grass or Astroturf tracks with tons of grip, use heavier springs at both ends of the car to resist traction rolling.

CONCLUSION
As you’ll notice, each adjustment sacrifices a particular handling trait to gain another. There’s no magic adjustment to make your car “super dialed”, so decide what your buggy needs to do differently, make changes to your car, and see if your lap times improve. This guide should serve as a perfect compliment to the most useful tool you’ll ever find in your RC career: practice.

                                                                                                                                                               

Source:

http:// Remote Control Toys on Sale

Miniature Wonders @ The Rc Drift Body Comp

Miniature Wonders @ The Rc Drift Body Comp

I’m so glad I decided to go to the Hobby Garage in Kuki the other day. Had I not, I don’t think I would have ever understood what “custom” really means to RC car enthusiasts in Japan. If you thought what you saw in yesterday’s post was impressive, well all I can say is scroll down and be further surprised…I sure was once I had the chance to go through every car entered in the contest!

Check out this S13 body. So many cool details like the ground-scarping front lip spoiler, plenty of negative camber and the model-car equivalent of rolled fenders. It’s all about the tuck!

Next to it was this camo Onevia running even more camber, “bolted on” overfenders…

…and a pink engine. Despite only having 4-ignition leads and four intake runners on the plenum it did look more like an RB than an SR!

I guess if you want to place high at these sort of competitions, you really have to push your imagination and think outside the box. This beaten up S15 reminded me of what some of those crazy drifters end up doing to their cars at events like the Drift Matsuri in Ebisu Circuit.

Looks like it took some pretty big hits and a few excursions into the mud, but at least it’s still straight enough to drift!

We saw a little teaser image of this Toyota Estima minivan yesterday. Aside from the fact that it’s already quite cool that you can get these sort of bodies for 1/10th scale chassis…

…it obviously doesn’t stop owners taking them to the next level. This is probably inspired by those vans that show up at Daikoku PA on a Saturday night and blast out ridiculously loud music.

It even had a fully decked out trunk with big subwoofers and a functioning LCD screen. There were two smaller additional screens on either side of the van too. A constant power supply kept the mini-screens functioning and the music playing.

And if you think that’s wild take a look at this Subaru BRZ. This fully functional drift car was equipped with all sorts of cool touches…

…like the custom turbo boxer engine, angel eyes in the headlights….

…but most incredible of all was the custom drop top conversion. It took the owner eight months of hard work to design and build the mechanical servo-actuated roof and trunk! A second remote control is needed to actuate the opening and closing of the roof, trunk and hood.

But no matter how simple or complex the cars may be, each have their own appeal.

This “Arctic version” 180SX is one I really liked. The idea alone was so bizarre but so cool at the same time it was probably the one that made me smile the most.

And of course the details are painstakingly realistic!

Nomuken in the house! Well not really as he’s driving an 86 nowadays, but you know what I mean…

Not sure what the inspiration for this 86 was, it certainly does share some similarities with Orido’s D1 car but is seriously beefed up in the fender department.

Our very own Mad Mike should be very happy to see this particular FD!

Any DTM fans out there? Then this Alfa Romeo 155 V6 Ti inspired build…

…will be right down your street.

The Volklinger S14 we saw last year at Hellaflush Kansai and Slammed Society events had inspired lots of other military-themed cars, including scaled ones too of course.

There were a good couple of hours for us all to take closer look of the cars present and submit our votes.

Towards the end of the video presentation of the cars there was one last-minute addition…from me!

In the hope that I would get some time after the event to drift, I brought my brand new RTR-X Mustang from HPI that arrived the other day from the US. I thought it would be a great chance to break her in at a pro Japanese track and once the organizers heard I had a car of my own they let me add it to the line up.

So it got its own video presentation! Some of the guys there seemed to like the eight velocity stacks sticking out of the hood as well as the color matched wheels. It was a great moment; I almost felt accepted, like I was one of them. Unfortunately they all knew it was  completely stock and I hadn’t even turned a screw on it so I dropped the act and continued taking pictures.

Not before I had time to waste one battery though…we all need breaks right!

The owner of this Countach probably thought it would be a sacrilege to have a Lambo and not have the scissor doors open. So he fixed that, and you can now open and close them at the flick of a switch. He was even drifting it with the doors up…letting all the haters hate. That’s right!

Here is another Drift Matsuri missile special. It takes some real skills to make this sort of carnage look realistic…

…all the way down to the rust sport and the shattered glass.

You kyusha fans out there will love this S30 Fairlady Z. As the owner showed me on his phone, Linhbergh’s feature on “that 240Z” was the inspiration.

Pretty damn cool right?

After having shot each entrant’s car in detail I took a wonder over to the track side of the Hobby Garage, where things were very busy with lots of drifting, charging, fine tuning.

It’s there that I spotted even more cool builds, and it seems that most of the guys that were part of the Custom Body Contest had also brought…

…one or is some cases two or more other chassis and bodies to play with.

It’s almost unheard of to see anyone use a stock controller to drift cars at the track. Everyone sports the latest and most expensive commanders, usually just as accessorized as the cars and chassis themselves with carbon-look wraps and replacement steering “wheels.”

Some other cool cars I spotted on track were this pair of Toyotas, this MotorFIX-inspired Corolla…

…and this widebody slammed KP61 Starlet.

Later on in the afternoon it was time for the prizes to be handed out. The organizers of the event at the Hobby Garage had come up with a novel way of eliminating the finalists that didn’t make it to the top spot in the three different categories. If not unanimously voted the best, it was simply flushed down and dropped through a remote-operated trap door! (don’t worry there were a couple of pillows to cushion the fall)

The camo Onevia took the win in the S-chassis group…

…while the shakotan Z grabbed the top spot in the miscellaneous category.

Long and hard work obviously paid off as the top prize in the custom category went to the drop-top BRZ.

After the award ceremony everyone was invited to the main track…

…to join in a few slow parade laps…which quickly turned into a bit of hard drift session!

What a great Sunday out this turned out to be. It was the perfect example of how many different ways enthusiasts, or otakus in this case (!), can enjoy their passion for cars. http://Remote Control Toys on Sale                                                               Credits:    http://www.speedhunters.com/  http://

How to Get Started in Hobby RC: Body Painting Your Vehicles

One of the best ways to personalize an RC kit is to give it a fresh coat of paint. This guide will focus on the basics of painting bodies for RC cars–a genuinely fun and rewarding art form.   

We’ve run through the basics of several types of remote controlled vehicles, from cars to boats to planes–and some tweaks to modify them. But one of the best ways to personalize an RC kit is to give it a fresh coat of paint. This guide will focus on the basics of painting bodies for RC cars–a genuinely fun and rewarding art form.

Most RC car bodies are made from polycarbonate plastic (aka Lexan). It is incredibly tough stuff, which makes it ideal for absorbing the abuse that RC cars are routinely subjected to. The bodies are formed by vacuforming a sheet of clear Lexan over a mold. The body is then painted on the inside surface, which effectively makes the plastic a thick, shiny clear coat. If painted correctly, a body can last and look good for a long time. http://amzn.to/22rOrBO

The Caveats

If you are an accomplished airbrush or spray paint graffiti artist, you already possess many of the skills necessary to paint a RC car body. There are, however, a few elements that are specific to painting car bodies that you must consider. The number one thing to know is that most paints will not stick to Lexan. You must use specially formulated products that are typically sold in hobby shops as RC car body paint. This isn’t a marketing gimmick. These are truly the only paints I have seen that bond reliably to Lexan. If you use some random hardware store paint, it will only look good until that first crash. Then, the paint will begin to chip and flake off, randomly eroding your artistic efforts. Trust me; don’t get cheap with the paint. Buy the right stuff and have no regrets.

Since we will be painting the inside of the body, some things may be reversed from painting tasks you are used to. Obviously, any masking must be done as a mirror image. Less obvious is the need to apply the darkest colors first. Since it is difficult to achieve a fully opaque finish, having a dark color behind a light color may affect the tint of the light color. Applying the dark color first negates this effect. Keep this in mind as you plan out your paint scheme and order of operations.

WORKING WITH LEXAN REQUIRES SPECIAL PAINT AS WELL AS SPECIFIC TOOLS TO ACHIEVE CLEAN, LONG-LASTING RESULTS. A VARIETY OF COMMON MASKING OPTIONS CAN BE USED.

You may need to do trimming or drilling of the car body. I highly recommend using tools designed for the job. The curved blades on Lexan scissors make it easy to trim wheel wells and other rounded areas without creating jagged edges on the body. A tapered reamer is the only sensible way to drill holes in Lexan. Regular drill bits will grab and tear as they go through, often leaving a mess. . If you are using a body that will require cutting and drilling, it is usually better to do this before painting. It helps to have the body clear when you are trying to get everything aligned and fitted.

Your Options

There is a seemingly endless selection of Lexan bodies. Manufacturers will often offer replacement bodies for the vehicles in their lineup. Aftermarket companies also sell a range of bodies in many different styles. Some are designed for a specific vehicle, others are more generic and can be adapted to whatever RC car you please.

In addition to styles, RC car bodies also differ in their level of finish. Some are fully trimmed and have holes drilled for the body posts. Many others must be cut free from the vacuformed sheet and have holes drilled; hence the scissor and reamer suggestion above. The package may also include precut paint masks for the windows or perhaps decals to emulate headlights. Pay attention to these details as you search for a body, as they could have significant impact on the level of effort it takes to get the body painted and fitted to your car.  http://amzn.to/22rOrBO

LEXAN CAR BODIES ARE STOUT STUFF. THIS GARAGE-SALE TREASURE HAS SEEN MUCH ABUSE BUT ITS ONLY PROBLEMS ARE COSMETIC. I REPLACED THE BODY ANYWAY.

Project Example

My brother-in-law recently gave me a Traxxas E-Maxx monster truck that he found at a garage sale for just $15. He’s always had a knack for finding super deals like that. Other than the missing transmitter, the E-Maxx appeared to be complete and in relatively good condition. Thanks Dan!

Since I planned to replace the haggard shell on the E-Maxx anyway, I thought that it presented a good opportunity to illustrate the basic techniques of painting a Lexan body. I actually bought two bodies. On one, I will show a very basic, single-color spray can paint job. With the other body, I will illustrate a more complex multi-color motif that necessitates an airbrush.

THIS REPLACEMENT BODY FOR THE TRAXXAS E-MAXX COMES TRIMMED AND DRILLED TO FIT THE TRUCK. IT ALSO INCLUDES A TRANSPARENT OUTER MASK. ALL OF THESE FEATURES EXPEDITE THE PAINTING AND FITTING PROCESSES.

The bodies that I purchased are Traxxas’ replacement units for the E-Maxx. They are trimmed and drilled for the truck, so that was a big time saver. What I like most about these bodies is that they have a transparent mask on the outside. This prevents paint overspray from getting on the outer part of the body. It is easy enough to mask the outside yourself, but having a transparent mask means you don’t have to remove it every time you want to see how the body looks from the outer surface.

The Spray Can Approach

I did a quick fit check to make sure the body fit the truck as intended (it did) and then got down to business. As with any paint job, the key to a good finish is proper surface preparation. In this case, the body must be washed to remove any dirt, oil, fingerprints, etc. I use a tiny drop of dish soap and warm water to wash the inside surface by rubbing it with a clean wet cloth. After rinsing, I used lint-free paper towels to get everything completely dry.

Next I masked the windows. There are many ways to mask an area for painting. I typically prefer to use regular low-tack masking tape whenever I can. The blue household stuff is good for masking large areas and that’s what I used for the windows. Liquid mask is good for compound curves and complex designs. For stripes or small areas, thin vinyl masking tape works very well. You can also use frisket film, which is a little like adhesive shelf paper. I used a variety of these masks on the airbrushed body, which I will explain later on.

A SHARP KNIFE AND A LIGHT TOUCH ARE ALL YOU NEED TO TRIM MASKING TAPE. ALWAYS MAKE SURE THE FINISHED EDGES ARE FIRMLY ADHERED TO THE LEXAN.

Allow me to digress a bit further on the tape topic. One of my biggest pet peeves is when people set tape rolls down on their side. When that occurs, whatever dirt, dust, hair or other schmutz happened to be on that surface is now stuck to the edge of the tape. When you apply the tape as a mask, the clingons come with it and compromise the edge seal. The result is often color bleeding on your painted edges. To mitigate this, I keep a few generic-use rolls of masking tape handy and visible to the rest of the household while keeping my private stash of clean tape squirreled away in a Ziploc bag. I had to use the community tape for the windows, but it worked out okay.

The windows are marked with small ridges in the plastic. I applied adequate tape to completely cover the area and then trimmed away the excess. I used an X-Acto knife with a new #11 blade for trimming. It takes a very light touch to cut through the tape and not dig into the plastic. The window ridge creates a natural guide for cutting. Once the cut was complete, I carefully peeled away the excess tape. I then used a fingernail to reseal the entire perimeter of the mask.

THE FIRST COAT OF ANY COLOR SHOULD BE A VERY LIGHT MIST TO HELP SEAL THE EDGES OF THE MASKING MATERIAL AND ENSURE A DRIP-FREE FINISH.

The paints I used are from the new Duratrax line of RC car paints. On this first body, I used the Metallic Red spray paint. I always start with a super-light mist coat of paint. This helps to seal the edges of the masks and prevent bleeding. Not all spray cans work the same. It helps to practice a little on a scrap piece of plastic or cardboard first, so you can get a feel for the spray characteristics of the nozzle.

The mist coat dried within a few minutes, so I began applying subsequent coats, each only a little heavier than the mist coat. There’s no point in getting in a hurry and glopping on a heavy coat. It is likely to run and will take longer to dry. After about half an hour and four coats of paint, the body had a nice, even, red tint to it, so I moved on to the next step.

Most metallic, pearl, and candy, and fluorescent colors are not intended to be used alone. They must be backed with a coat of silver or white to make them opaque. In this case, I applied two coats of white Base Cover Coat. This really made the color come alive. I then carefully peeled off the window and outer body masks. However I wasn’t quite done yet.

I LIKE TO RUN A SHARPIE MARKER AROUND WINDOW BORDERS TO HELP HIDE ANY IRREGULARITIES IN THE MASKED EDGE.

I like to trace the perimeter of the window using a black Sharpie marker on the outside of the body. This helps to cover any irregularities in the edge of your mask, of which I had plenty. You can remove any goof-ups with the Sharpie by using a rag and alcohol (denatured alcohol works best). It was at this point that I noticed the bodies did not include headlight decals–that’s a separate item. I guess I’ll have to add them later. The same decal sheet also includes black decals for the windows. If you decide to use something like that, you wouldn’t need to do any masking. Just paint the body and apply the decals to the outside.  http://amzn.to/22rOrBO

THE PAINTED BODY ONLY NEEDS HEADLIGHT DECALS TO BE COMPLETE. I EXPECT THIS PAINT JOB TO WITHSTAND A LOT OF ABUSE AND LOOK GOOD FOR A LONG TIME.

After allowing the paint to dry overnight, I completed the final step of the paint job. I applied squares of masking tape on the underside of the body around the body post holes. This prevents the top of the body posts from scratching the paint each time you install the body. While it isn’t fancy, this red paint job is clean and should last for a long time.

The Airbrush Approach

The advantage of using an airbrush is that it allows much more precise control than a spray can over the amount of paint that comes out and the size of the spray pattern. This precision opens up many possibilities for custom designs and effects. My meager airbrushing abilities only scratch the surface of what is possible. With the second E-Maxx body, I created a paint scheme that is simple by airbrush standards. Yet, it displays some of the subtleties that are possible. My goal here is not to teach you how to use an airbrush, but rather to help you to see why you should learn.

WHEN USING AN AIRBRUSH TO PAINT SMALL AREAS, IT IS IMPORTANT TO MASK ANY PARTS THAT YOU DO NOT WANT PAINTED.

I used frisket film to create the Tested “T” logo on the hood. I first cut out the entire logo design on my workbench (as a mirror image) and then applied the completed mask to the hood. To help me align the mask, I drew reference marks on the outside body mask with a Sharpie. Next I masked off the orange, black, and white stripes that dissect the body. These were created freehand using flexible masking tape, also from Duratrax. This stuff is really flexible (like electrical tape), but doesn’t leave adhesive residue. It takes a little practice, but you can get this tape to fit around compound curves and features in the body relatively easily.

Once the features were masked, I used newspaper to mask most of the body. I left only the soon-to-be black stripes and “T” open. Remember: darkest colors first. I used spray paint for that quick job. Next came Candy Blue for the front of the truck. First, I custom mixed a darker shade of blue by mixing in a little black paint. I then added thinner to get the paint to the right consistency for airbrushing. I applied this darker color to create a fade where the blue meets the forward orange stripe. I also added light touches of this color around the window frames and the T logo to give each a little depth.

Next, I thinned straight Candy Blue from the bottle and applied several coats. As with the red on the previous body, this color also needs an undercoat. This time, I used silver, which I think gives a more metallic finish.  http://amzn.to/22rOrBO

I made a grey color by mixing white and black. This was applied behind the rear orange stripe. It transitions to a lighter grey, and then to white. Somewhere while doing this fade work, I added a shot of grey to the bottom panel of the T logo.

The Fluorescent Orange was airbrushed next. It required a white undercoat. I was able to kill two birds with one stone by painting the white areas and undercoating the orange in one shot. Once the white dried, I traced the window outlines with a Sharpie and called it done. Again, it isn’t a very complex paint job, but it should give you an idea of the effects that are possible with the control afforded by an airbrush.

THE COLOR FADES AND HIGHLIGHTS ON THIS BODY ILLUSTRATE SOME OF THE SIMPLE EFFECTS THAT ARE POSSIBLE WITH AN AIRBRUSH. MANY MORE EXOTIC POSSIBILITIES ABOUND.

Conclusion

I hope these tips will encourage you to try painting your next RC car body. I think it is a lot of fun to do and the creative possibilities are endless. Life is too short for production line paint jobs!

Let’s summarize the key points to remember:

  • Paint goes on the inside surface
  • Wash the body with dish soap
  • Use the proper paint and tools
  • Apply dark colors first
  • Always start with a mist coat on every new color
  • Never use a heavy coat of paint
  • Some colors require a white or silver undercoat
  • Be creative!

Credits:  TERRY DUNN   http://www.tested.com/tech/  http://

Learn Facts About Electric RC Cars

Electric RC cars are the most popular types of RC cars today. This might be because of the fact that every RC car hobbyist begins with this type of vehicle. The operation of an electric RC car is simple enough to be understood even by children. This makes it ideal for the beginner RC car enthusiast.

Electric RC cars have a lot of advantages. These advantages are what make them appealing to the general public. RC cars, which started as toys, have now become accepted as hobby items for adults. Here are some advantages of electric RC cars:

1) Ease of use- as said before, electric RC cars are very simple machines to operate. This is the reason why many parents opt to buy these vehicles for their children during Christmas. Unlike Nitro RC cars which require some complicated procedures in order to ensure correct operation, electric RC cars only require you to put on the batteries and you’re off!

This can be very important especially because of the fact that most people who buy electric RC cars are beginners in the hobby. It is often the fact that people who buy electric RC cars are buying their very first RC car kit. Although very few actually go on to become serious RC car hobbyists, the electric RC car can introduce them to the concept that RC car racing is fun.

2) Cheaper- Electric RC cars generally cost less than their gas-powered counterparts. This is the reason why they are more accessible to the general public. Electric RC cars can come as pre-assembled toys or can be bought in kits. Either way, electric RC cars can cost you so much less than Nitro models.

Economics can be very important to many people when they are looking for items to acquire. Let’s face it: not all of us can afford everything that we want in life. Some people go for electric RC cars because they provide a much more economical alternative to gas-powered ones.

They are also cheaper in terms of fuel. Contrary to popular belief, gas powered RC cars cannot be fueled with gasoline. The fuel that is used in nitro RC cars is a mixture of Nitromethane and castor oil which can be bought at various specialty shops. Electric RC cars, on the other hand, only need batteries or the regular recharge in order to run. This means that you don’t have to spend additional cash on fuel.

3) Indoor use- People are attracted to electric RC cars mainly because of the fact that it can be used indoors. This means that people are able to make use of their RC cars even if outdoor conditions are unfavorable.

What makes electric RC cars so different from Nitro RC cars? Well, it is a combination of two factors:

1) Noise- Electric RC cars run quietly. This makes them ideal for usage indoors. Nitro RC cars rely on combustion to run, which means that they can make a lot of noise. This is especially true if someone tried to operate a Nitro RC car indoors. The sound would reverberate off the walls and cause quite a racket.

2) Smoke- Since Electricity produces clean energy, there are no undesirable byproducts of running an electric RC car. However, electric RC cars need to be charged regularly which means that you might not be able to enjoy them for as long a time as you would enjoy a Nitro RC car.  Credits:

suegold

2015-New-Design                                   http://amzn.to/1IpBPPE                               http://

Newbie Nitro RC Tips

car1

HPI Racing 112619 Nitro RS4 3 Mustang RTR-X RTR 

HUGE SPEEDS ON A SMALL SCALE!
2.2 HORSEPOWER FOR MAXIMUM FUN

World Champion Drifter Vaughn Gittin Jr. and the Need for Speed crew teamed up to build this one-of-a-kind, fully-functional Street, Track and Drift machine, and this is the official, authorized RC nitro replica, powered by HPI Nitro muscle! While Vaughn will be the only one thrashing the full-size car, the entire world will be able to enjoy driving the HPI Nitro 1/10th version: The Nitro RS4 3 Evo+! With the 1969 Mustang RTR-X body on our super-popular Nitro on-road platform, you’ll get a combination that will inspire tire-burning, smoke-churning fun for grins and speed wherever you go!

With a stiff aluminum chassis, 4WD shaft drivetrain and adjustable oil-filled shock absorbers, the Nitro RS4 3 Evo+ is a scaled-down race car for the street – the perfect foundation for a tire-smoking muscle car like the real 1969 Mustang RTR-X! The Nitro RS4 3 Evo+ is built from the ground up for speed, durability and performance, and with its Ready To Run ease you can be off and running within minutes of opening the box!

This car is loaded with goodies: a 2.2hp HPI T3.0 engine fitted with an adjustable 2-speed transmission for ground-stomping acceleration and superfast top speeds, full-time 4WD for supreme control and acceleration, steel shaft drivetrain that lets you shrug off road debris that would halt a belt-drive car in its tracks,waterproof electronics so you don’t have to worry about wet conditions and a 2.4GHz radio system that lets you have worry-free fun!                                                      car12

Vortex SS 1/10 Scale Nitro Desert Truck

Hold on tight! There’s a Vortex coming. Complete with full fendered body, scale off road tires, and beefy front and rear bumpers, the Vortex SS is ready to throw down.

A 3.0cc SH-18 nitro engine, precisely tuned aluminum exhaust pipe, and performance header provide the power and precision needed to blow away the competition.

 

Completely adjustable pillow ball suspension provides smooth performance for any terrain.

 

The Vortex SS has many blue anodized aluminum parts including its 2.5mm chassis, race adjustable shock towers, tunable oil filled coil over shocks, and heat sink. Not only will the Vortex SS be screaming around the track or blasting over dunes, it’ll look good doing it.

 

The 2-speed transmission allows crazy amounts of low end torque, while still providing blistering 2nd gear top speeds. Easily adjust the shift point,with the turn of a screw. Composite disc brakes and a 2.4GHz radio system ensure control, while shaft driven 4WD provides the traction needed to create a Vortex of excitement!

http://

The Top 10 facts about RC toys and RC vehicles!

RC-Vehicles-1  http://Red Line Remote Control

When it comes to RC toys, remote control toys, RC vehicles and remote control vehicles there are 10 really important things that everyone should know! This is especially the case if you are looking to buy a toy or vehicle for the first time or even if it’s just been a fair while since you last bought and you’re getting back into things.

The 10 things I’ve covered below are the best starting point to get a good understanding of the current state of the RC and remote control world including some of the common jargon and terminology used.

If there is anything else you think I’ve missed here that would also be great to have listed please feel free to leave me a comment below and perhaps we can later do a revised version of this post extending our list of 10 out to a top 20!

1. What is the real difference between ‘RC’ and ‘remote control’?

Now this is a very interesting one! Often when you read anything on the subject of remote controlled toys and vehicles you’ll either see the term ‘RC’ or just ‘remote control’ used. Often these terms are also used interchangeably (just like I do on this site).

So is there really a difference between what these two terms refer to?

To some degree this really comes down to who you ask. Just check out any of the forums on the internet and you’ll see there are even often some varying views within the community itself as to what the distinction really is.

Let’s start by looking at the term ‘RC‘. This is generally acknowledged to be short for ‘radio control’ and refers to the technical set up of the gadget in question which (keeping it relatively simple) is essentially:

  • A ‘transmitter’ which is the hand held controller you use to control the direction, movement etc of your gadget. When you move a joystick on push a button on your hand held controller effectively converts this movement into a message which is sent out as radio waves to your gadget.
  • A ‘receiver’ which sits inside your gadget to be controlled and receives the radio wave instructions sent from the transmitter.
  • A ‘servo’ (or even more than one servo) which is passed the instructions from the receiver and in response to these instructions will send an appropriate message to the motor (or motors) in your gadget.
  • A ‘motor’ (or even more than one motor) which once it receives is instructions from the servo takes action to put those instructions into effect e.g. makes your car race forward or backwards or turn left or right etc.

If you’re after a more in depth explanation of all these different components and how they interact on a more technical article then check this out

So in comparison to this very clear technical based understanding, what does ‘remote control’ actually mean? Now this is where a bit more disagreement often arises.

Unlike the very clear technical basis we have to define the term ‘RC’ when it comes to remote control we are much more looking at a descriptive term which on its most widely accepted meaning refers to any method of controlling a toy, vehicle or other gadget from a distance.

So this could refer to methods of control such as by wires, by infrared (as a lot of the cheaper models today use very effectively) or even arguable by RC as of course when you use an RC transmitter to operate a car you are still operating it from a distance.

So while all RC gadgets could be seen to be ‘remote control’ not all ‘remote control’ gadgets have the necessary technical make up to be considered ‘RC’ gadgets.

BUT increasingly people use the terms interchangeably (even I tend to on this site) and in all honesty it doesn’t really matter unless of course you are looking at buying and are really specifically after some of the advantages radio control may have over some of the other forms of remote control. In these cases make sure you do spend some time looking at the detail behind the name used to make sure you are really getting what you want.

2. Are RC Toys and RC Vehicles expensive?

Yes and no! The answer here really depends on what you are after.

The great thing we are seeing about some of the developments in new technology in the space (as I talk about further below) is that the range of toys, vehicles and gadgets is increasing not only in terms of the overall number available but also the previously existing boundaries are being pushed in terms of what is available to high end buyers as well as at a much more affordable entry level.

For example you can pick up a pretty impressive and fun little indoor RC helicopter for less than $30.        RC-Helicopter1 http://Red Line Remote Control

But at the very high end of things you can also spend into the thousands on a top of line nitro powered remote control car for competitive racing, particularly once you invest in the replacement parts and upgrades most people who get involved in competitive racing would consider necessary.

3. Are they just for kids?

In some cases definitely yes but in some cases definitely no!

You can of course get some great looking and very reasonably priced cars for kids of all ages that are great for safe indoor use. However at the other end of spectrum some of the high end modern nitro powered cars can hit 100 mph (and come with a price tag to match)! Definitely not a toy!

Similarly planes and other vehicles that can also achieve significant altitudes and velocity (such as some helicopters and drones) need to be used responsibility at all times and definitely wouldn’t fall into the toy category.

4. Is it a solo hobby?

Although when many people think of remote control vehicles they often associate it as a fairly solo pursuit there are in fact a number ways that is becoming more of a community focused pass time if you want to get involved in that way.

The internet has of course introduced a wide number of forums and social networking sites on which you can discuss all aspects of remote control toys and vehicles from maintenance, to new technology and even ‘vintage’ collectables. However there has also always been a strong club culture for real enthusiasts who want to get involved in competitive racing or just want to enjoy and show off their vehicles with others.

Today clubs for all types of vehicles are still strong and if anything recent years have seen resurgence in some areas, particularly as some of the more high performance and competition focused vehicles also come down in price.

5. Are remote toys and remote control vehicles easy to break?

Overall the higher end remote control toys and remote control vehicles are generally more robust these days than they have ever been, but the true answer to this really falls into parts.

Firstly all vehicles are of course generally designed for a specific purpose.

For example a remote control sailing boat is not going to go well in rougher waters and waves and also anRC car designed for on track racing will not cope well on a rough dirt track.

Using a remote control vehicle outside of its intended areas of use is not only going to increase the chances for breakages or permanent incapacitation but – let’s face it – it’s just not going to be as much fun if the performance of your vehicle will be hampered by the environment you’re trying to use it in.

Secondly, no matter how robust something is you need to be aware of its inherent limitations and also what maintenance it requires to keep it in the best condition. A higher end RC vehicle may be sturdier in the short term but its optimum performance and overall state of repair may deteriorate more noticeably overtime than a lower end vehicle if it’s not properly maintained.

So when choosing an RC vehicle think about how committed you really want to be to maintenance of the vehicle and also just how respectfully you are likely to treat it and tailor your purchase accordingly. This is a particularly important consideration when buying for kids!

6. Is the technology improving?

Definitely! The speed of motors, the robustness of the vehicles manufactured and of course the size and expense of the other component parts are also decreasing meaning that there are a lot more possibilities theses days when it comes to the purchase of (or building your own) RC vehicles in all price ranges.

At the lower end of the spectrum some of these technological advances have been especially seen in the greater quality of infrared and non ‘radio controlled’ RC vehicles (and most particularly those that fall into the ‘remote control toy’ category) that we’ve seen come onto the market in recent years.

The other really interesting development (I think!) in the space has also been the increasing emergence of iPhone and all the mobile phone and tablet controlled vehicles. These use a range of technologies from infrared ‘dongles’ that connect to your mobile device (like these ones do) to even blue tooth (like this one does) to control your vehicle.

7. Are there more to RC vehicles and RC toys than just cars, planes, boats and helicopters?

Yes! Yes! Yes! These days you can pretty much pick up any time of RC vehicle you can wish for. From tanks, jets, and submarines to even more exotic models like this one: http://Red Line Remote Control

8. Do all RC toys and RC vehicles run on batteries?

Although controllers will always use some form of batteries (whether standard off the shelf or more specific rechargeable ones), vehicles themselves can run on either batteries (in varying forms once again) or what is referred to as ‘nitro‘.

Nitro fuel is essentially just a methanol-based product that has had varying amounts of oil and nitromethane added. The type of nitro fuel you want to use depends on the type of vehicle your running (and also of course your budget!). Speciality nitro fuel can be purchased from all hobby shops and for the more intrepid amongst us you can in fact mix up your own!

Although less common than Nitro powered vehicles it is also possible to get vehicles which run on variations of more traditional gasoline.

Nitro and gas powered engines are generally only found in the more highline or competitive focused models. Definitely not something you want running inside your house!

9. Are old RC toys and RC vehicles able to be refurbished or updated?

This really depends on the model you have but for the ones which were more expensive when purchased generally you can update and up-spec them.

To some degree this will also depend on just how old the vehicle in question is and whether any newer parts can be substituted for the older materials.

There are however some fantastic examples out there of the refurbishment of older vehicles – check this out from the guys at IconicRC featuring a refurbished and modified Tamiya Hot Shot II 4WD Buggy (also actually the first car I had when I was 11!). http://Red Line Remote Control

10. Are the best ones only for use outdoors?

Although you can get some amazing RC toys and RC vehicles intended to be primarily used outdoors some of the developments in the whole RC space in recent times have most definitely benefitted what types of vehicles and toys you can run indoors.

From really fun and robust helicopters and drones to mini cars, iPhone controlled vehicles and even robots.

Whether you want something for indoors or outdoors these days you can be guaranteed to have a wide range of options to choose from!                                                                                                                                 Credits: http://www.myrctopia.com/

http:// http://